Unit-1

Small-Scale Fading

(Based on multipath time delay spread)

Flat Fading

- 1. BW of signal < BW of channel
- 2. Delay spread < Symbol period

Frequency Selective Fading

- 1. BW of signal > BW of channel
- 2. Delay spread > Symbol period

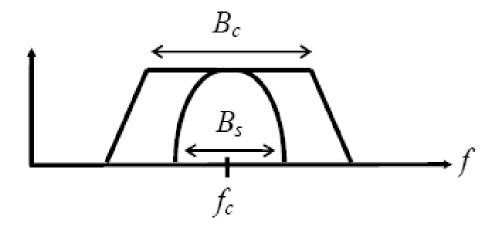
Small-Scale Fading

(Based on Doppler spread)

Fast Fading

- 1. High Doppler spread
- 2. Coherence time < Symbol period
- 3. Channel variations faster than baseband signal variations

Figure 5.11 Types of small-scale fading.


Slow Fading

- 1. Low Doppler spread
- 2. Coherence time > Symbol period
- 3. Channel variations slower than baseband signal variations

1) Fading due to Multipath Delay

A) Flat Fading
$$\rightarrow B_s \ll B_c$$
 or $T_s >> \sigma_\tau$

- $T_s \ge 10\sigma_\tau$
- signal fits easily within the bandwidth of the channel
- ☐ channel BW >> signal BW

most commonly occurring type of fading

- spectral properties of Tx signal are preserved
 - signal is called a narrowband channel, since the bandwidth of the signal is narrow with respect to the channel bandwidth
 - signal is not distorted
- What does $T_s >> \sigma_{\tau}$ mean??
 - all multipath signals arrive at mobile Rx during 1 symbol period
 - : Little intersymbol interference occurs (no multipath components arrive late to interfere with the next symbol)

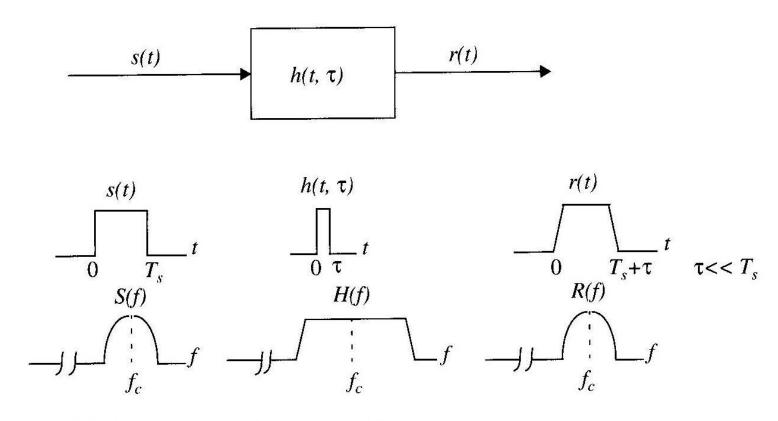
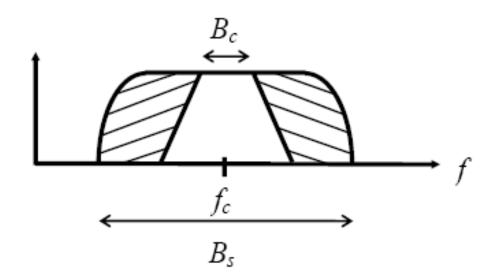



Figure 5.12 Flat fading channel characteristics.

- flat fading is generally considered desirable
 - Even though fading in amplitude occurs, the signal is not distorted
 - Forward link → can increase mobile Rx gain (automatic gain control)
 - Reverse link → can increase mobile Tx power (power control)
 - Can use diversity techniques (described in a later lecture)

B) Frequency Selective Fading
$$\rightarrow B_s > B_c$$
 or $T_s < \sigma_{\tau}$

- $-T_s \leq 10\sigma_{\tau}$
- $B_s > B_c$ → certain frequency components of the signal are attenuated much more than others

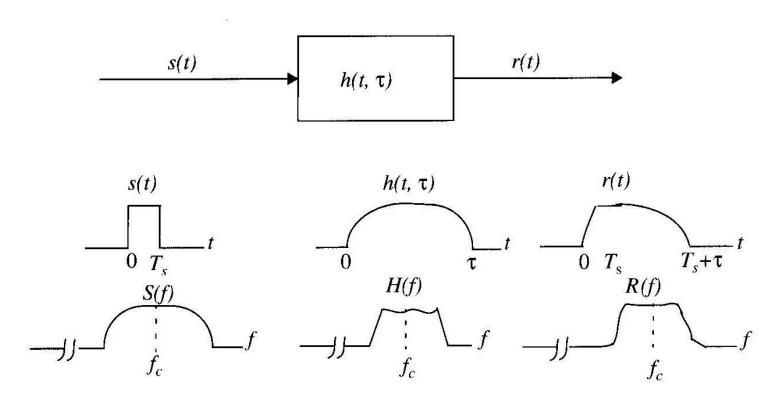


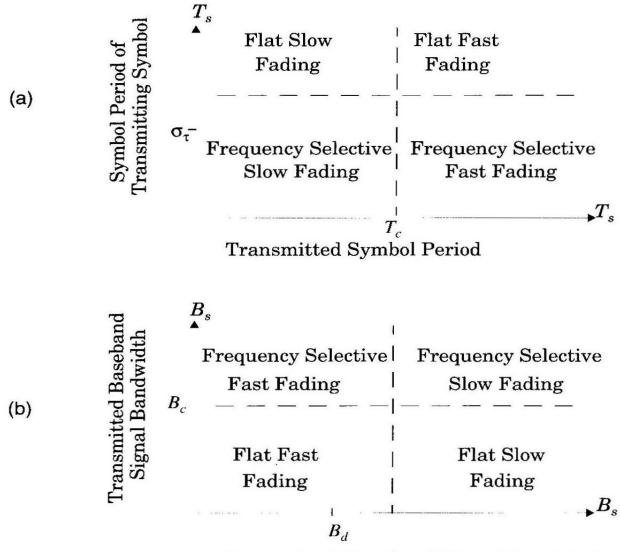
Figure 5.13 Frequency selective fading channel characteristics.

- $Ts < \sigma_{\tau} \rightarrow$ delayed versions of Tx signal arrive during **different** symbol periods
 - e.g. receiving an LOS → "1" & multipath "0" (from prior symbol!)
 - This results in intersymbol interference (ISI)
 - Undesirable

 it is very difficult to predict mobile Rx performance with frequency selective channels

- But for high bandwidth applications, channels with likely be frequency selective
 - a new modulation approach has been developed to combat this.
 - Called **OFDM**
- One aspect of OFDM is that it separates a wideband signal into many smaller narrowband signals
 - Then adaptively adjusts the power of each narrowband signal to fit the characteristics of the channel at that frequency.
 - Results in much improvement over other wideband transmission approaches (like CDMA).

- OFDM is used in the new 802.11g 54 Mbps standard for WLAN's in the 2.4 GHz band.
- Previously it was thought 54 Mbps could only be obtained at 5.8 GHz using CDMA, but 5.8 GHz signals attenuate much more quickly.
- Signals are split using signal → FFT, break into pieces in the frequency domain, use inverse FFT to create individual signals from each piece, then transmit.


2) Fading due to Doppler Spread

Caused by motion of Tx and Rx and reflection sources.

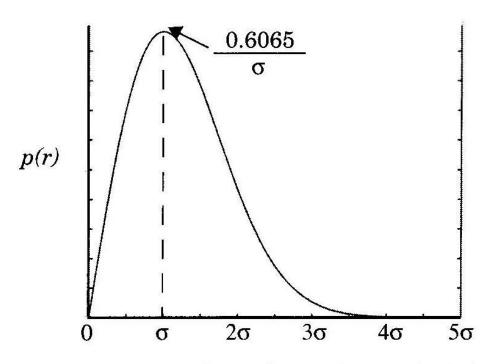
A) Fast Fading
$$\rightarrow B_s < B_D$$
 or $T_s > T_c$

- $-B_s < B_D$
 - Doppler shifts significantly alter spectral BW of TX signal
 - signal "spreading"
- -Ts > Tc
 - MRC changes within 1 symbol period
 - rapid amplitude fluctuations
- uncommon in most digital communication systems

- B) Slow Fading $\rightarrow T_s << T_c \text{ or } B_s >> B_D$
 - MRC constant over many symbol periods
 - slow amplitude fluctuations
 - for v = 60 mph @ $f_c = 2$ GHz $\rightarrow B_D = 178$ Hz
 - $\therefore B_s \approx 2 \text{ kHz} >> B_D$
 - B_s almost always >> B_D for most applications
- ** NOTE: Typically use a factor of 10 to designate ">>" **

Transmitted Baseband Signal Bandwidth

Figure 5.14 Matrix illustrating type of fading experienced by a signal as a function of: (a) symbol period; and (b) baseband signal bandwidth.


VI. Fading Signal Distributions

Rayleigh probability distribution function →

$$P(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) \qquad 0 \le r \le \infty$$

- Used for flat fading signals.
- Formed from the sum of two Gaussian noise signals.
- $-\sigma$: RMS value of Rx signal **before** detection (demodulation)
- common model for Rx signal variation
 - urban areas → heavy clutter → no LOS path
- probability that signal does not exceeds predefined threshold level R

$$P(R) = Pr(r \le R) = \int_{0}^{R} p(r)dr = 1 - \exp\left(-\frac{R^{2}}{2\sigma^{2}}\right)$$

Received signal envelope voltage r (volts)

Figure 5.16 Rayleigh probability density function (pdf).

 $-r_{mean}$: The mean value of Rayleigh distribution

$$r_{mean} = E[r] = \int_0^\infty rp(r)dr = \sigma\sqrt{\frac{\pi}{2}} = 1.2533\sigma$$

 $-\sigma_r^2$: The variance of Rayleigh distribution; ac power of signal envelope

$$\sigma_r^2 = E[r^2] - E^2[r] = \int_0^\infty r^2 p(r) dr - \frac{\sigma^2 \pi}{2}$$
$$= \sigma^2 \left(2 - \frac{\pi}{2}\right) = 0.4292\sigma^2$$

σ: RMS value of Rx signal before detection (demodulation)

Typical simulated Rayleigh fading at the carrier Receiver speed = 120 km/hr

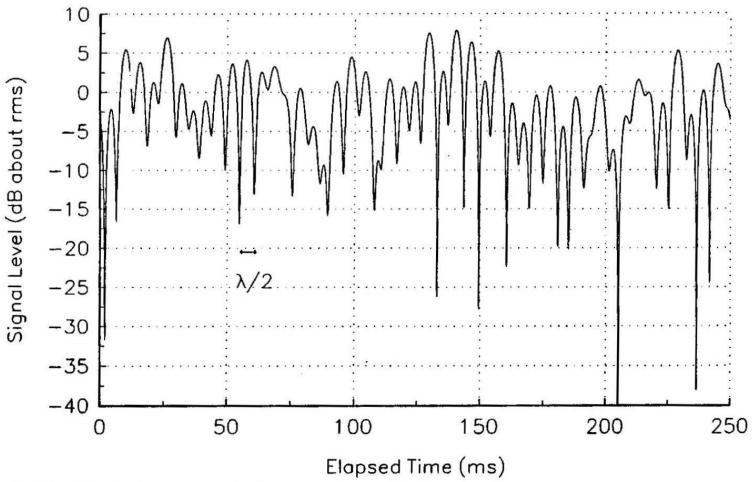
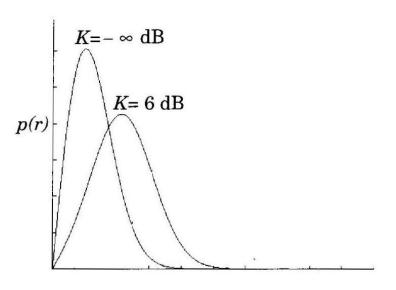



Figure 5.15 A typical Rayleigh fading envelope at 900 MHz [from [Fun93] © IEEE].

- Ricean Probability Distribution Function
 - one dominant signal component along with weaker multipath signals
 - dominant signal → LOS path
 - suburban or rural areas with light clutter

- becomp(r) =
$$\begin{cases} \frac{r}{\sigma^2} e^{-\frac{(r^2 + \Lambda^2)}{2\sigma^2}} I_0\left(\frac{Ar}{\sigma^2}\right) & \text{for}(A \ge 0, r \ge 0) \\ 0 & \text{for}(r < 0) \end{cases}$$
 : dominant

Received signal envelope voltage r (volts)

Figure 5.18 Probability density function of Ricean distributions: $K = -\infty \, dB$ (Rayleigh) and $K = 6 \, dB$. For K >> 1, the Ricean pdf is approximately Gaussian about the mean.